Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2015, Volume 15, Issue 2, Pages 151–160
DOI: https://doi.org/10.18500/1816-9791-2015-15-2-151-160
(Mi isu576)
 

This article is cited in 5 scientific papers (total in 5 papers)

Mathematics

Isoperimetry coefficient for simplex in the problem of approximation of derivatives

V. A. Klyachin, D. V. Shurkaeva

Saratov State University, 83, Astrakhanskaya st., 410012, Saratov, Russia
Full-text PDF (219 kB) Citations (5)
References:
Abstract: We introduce the isoperimetry coefficient $\sigma(G)= {|\partial G|^{n/(n-1)}}/{|G|} $ of region $G\subset \mathbb R^n$. In terms of this the error $\delta_\Delta(f)$ estimates for the gradient of the piecewise linear interpolation of functions of class $C^1(G)$, $C^2(G)$, $C^{1,\alpha}(G)$, $0<\alpha<1$, are obtained. The problem of obtaining such estimates is nontrivial, especially in the multidimensional case. Here it should be noted that in the two-dimensional case, for functions of class $C^2(G)$, the convergence of the derivatives is provided by the classical Delaunay condition. In the multidimensional case, as shown by the examples, such conditions are not sufficient. Nevertheless, the article shows how to apply these estimates to the Delaunay triangulation of multidimensional discrete $ \varepsilon $-nets. The results obtained give sufficient conditions for convergence of the derivatives on the Delaunay triangulation of discrete $ \varepsilon $-nets with $ \varepsilon \to 0 $. In addition, the ratio of the distortion factor is found for isoperimetry coefficient under the quasi-isometric transformation.
Key words: isoperimetry coefficient, simplex, piecewise linear interpolation.
Bibliographic databases:
Document Type: Article
UDC: 514.174.3+519.65
Language: Russian
Citation: V. A. Klyachin, D. V. Shurkaeva, “Isoperimetry coefficient for simplex in the problem of approximation of derivatives”, Izv. Saratov Univ. Math. Mech. Inform., 15:2 (2015), 151–160
Citation in format AMSBIB
\Bibitem{KlyShu15}
\by V.~A.~Klyachin, D.~V.~Shurkaeva
\paper Isoperimetry coefficient for simplex in the problem of approximation of~derivatives
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2015
\vol 15
\issue 2
\pages 151--160
\mathnet{http://mi.mathnet.ru/isu576}
\crossref{https://doi.org/10.18500/1816-9791-2015-15-2-151-160}
\elib{https://elibrary.ru/item.asp?id=23647131}
Linking options:
  • https://www.mathnet.ru/eng/isu576
  • https://www.mathnet.ru/eng/isu/v15/i2/p151
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :97
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024