Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2015, Volume 15, Issue 2, Pages 127–135
DOI: https://doi.org/10.18500/1816-9791-2015-15-2-127-135
(Mi isu573)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

Some Liouville-type theorems for the stationary Ginsburg–Landau equation on quasi-model Riemannian manifolds

S. S. Vikharev

Volgograd State University, 100, prospect Universitetsky, 400062, Volgograd, Russia
Full-text PDF (247 kB) Citations (2)
References:
Abstract: In this paper we find the conditions for validity of Liouville-type theorems for bounded solutions of the stationary Ginsburg–Landau equation and quasilinear elliptic inequality $-\Delta u \geqslant u^q$, $q>1$, on quasi-model Riemannian manifolds.
Key words: Ginsburg–Landau equation, Riemannian manifolds, Liouville-type results.
Bibliographic databases:
Document Type: Article
UDC: 501.1
Language: Russian
Citation: S. S. Vikharev, “Some Liouville-type theorems for the stationary Ginsburg–Landau equation on quasi-model Riemannian manifolds”, Izv. Saratov Univ. Math. Mech. Inform., 15:2 (2015), 127–135
Citation in format AMSBIB
\Bibitem{Vik15}
\by S.~S.~Vikharev
\paper Some Liouville-type theorems for the stationary Ginsburg--Landau equation on quasi-model Riemannian manifolds
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2015
\vol 15
\issue 2
\pages 127--135
\mathnet{http://mi.mathnet.ru/isu573}
\crossref{https://doi.org/10.18500/1816-9791-2015-15-2-127-135}
\elib{https://elibrary.ru/item.asp?id=23647128}
Linking options:
  • https://www.mathnet.ru/eng/isu573
  • https://www.mathnet.ru/eng/isu/v15/i2/p127
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024