Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, Volume 14, Issue 4(1), Pages 422–427
DOI: https://doi.org/10.18500/1816-9791-2014-14-4-422-427
(Mi isu531)
 

This article is cited in 4 scientific papers (total in 4 papers)

Mathematics

On Uniform Boundedness of Some Families of Integral Convolution Operators in Weighted Variable Exponent Lebesgue Spaces

T. N. Shakh-Emirov

Daghestan Scientific Centre of Russian Academy of Sciences, 45, Gadgieva str., Makhachkala, Republic of Dagestan, 367000, Russia
Full-text PDF (165 kB) Citations (4)
References:
Abstract: Let $k_\lambda(x)$ be a measurable essentially bounded $2\pi$-periodic function (kernel), where $\lambda\ge1$. Conditions on the weight and on the kernels $\{k_\lambda(x)\}_{\lambda\ge1}$ that provide the family of convolution operators $\{\mathcal{K}_\lambda f(x):\mathcal{K}_\lambda f(x)=\int_Ef(t)k_\lambda(t-x)\,dt\}_{\lambda\ge1}$ $(E=[-\pi,\pi])$ uniform boundedness in weighted variable exponent Lebesgue space $L^{p(x)}_{2\pi,w}$ are investigated.
Key words: Lebesgue spaces with variable exponent, convolution operators, Dini–Lipschitz condition.
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: T. N. Shakh-Emirov, “On Uniform Boundedness of Some Families of Integral Convolution Operators in Weighted Variable Exponent Lebesgue Spaces”, Izv. Saratov Univ. Math. Mech. Inform., 14:4(1) (2014), 422–427
Citation in format AMSBIB
\Bibitem{Sha14}
\by T.~N.~Shakh-Emirov
\paper On Uniform Boundedness of Some Families of Integral Convolution Operators in Weighted Variable Exponent Lebesgue Spaces
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2014
\vol 14
\issue 4(1)
\pages 422--427
\mathnet{http://mi.mathnet.ru/isu531}
\crossref{https://doi.org/10.18500/1816-9791-2014-14-4-422-427}
\elib{https://elibrary.ru/item.asp?id=22575451}
Linking options:
  • https://www.mathnet.ru/eng/isu531
  • https://www.mathnet.ru/eng/isu/v14/i4/p422
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:227
    Full-text PDF :96
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024