|
This article is cited in 4 scientific papers (total in 4 papers)
Mathematics
On Uniform Boundedness of Some Families of Integral Convolution Operators in Weighted Variable Exponent Lebesgue Spaces
T. N. Shakh-Emirov Daghestan Scientific Centre of Russian Academy of Sciences, 45, Gadgieva str., Makhachkala, Republic of Dagestan, 367000,
Russia
Abstract:
Let $k_\lambda(x)$ be a measurable essentially bounded $2\pi$-periodic function (kernel), where $\lambda\ge1$. Conditions on the weight and on the kernels $\{k_\lambda(x)\}_{\lambda\ge1}$ that provide the family of convolution operators $\{\mathcal{K}_\lambda f(x):\mathcal{K}_\lambda f(x)=\int_Ef(t)k_\lambda(t-x)\,dt\}_{\lambda\ge1}$ $(E=[-\pi,\pi])$ uniform boundedness in weighted variable exponent Lebesgue space $L^{p(x)}_{2\pi,w}$ are investigated.
Key words:
Lebesgue spaces with variable exponent, convolution operators, Dini–Lipschitz condition.
Citation:
T. N. Shakh-Emirov, “On Uniform Boundedness of Some Families of Integral Convolution Operators in Weighted Variable Exponent Lebesgue Spaces”, Izv. Saratov Univ. Math. Mech. Inform., 14:4(1) (2014), 422–427
Linking options:
https://www.mathnet.ru/eng/isu531 https://www.mathnet.ru/eng/isu/v14/i4/p422
|
Statistics & downloads: |
Abstract page: | 227 | Full-text PDF : | 96 | References: | 52 |
|