|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematics
Quadratic Hermite–Padé Approximants of Exponential Functions
A. P. Starovoitov Gomel State University, 106, Sovetskaya str., Gomel, 246019, Belarus
Abstract:
The paper deals with extremal properties of diagonal quadratic Hermite–Padé approximants of type I for exponential system $\{e^{\lambda_jz}\}_{j=0}^2$ with arbitrary real $\lambda_0, \lambda_1, \lambda_2$. Proved theorems complement known results of P. Borwein, F. Wielonsky.
Key words:
Hermite–Padé approximants of type I, quadratic Hermite–Padé approximants, asymptotic equality, saddle-point method.
Citation:
A. P. Starovoitov, “Quadratic Hermite–Padé Approximants of Exponential Functions”, Izv. Saratov Univ. Math. Mech. Inform., 14:4(1) (2014), 387–395
Linking options:
https://www.mathnet.ru/eng/isu526 https://www.mathnet.ru/eng/isu/v14/i4/p387
|
Statistics & downloads: |
Abstract page: | 222 | Full-text PDF : | 70 | References: | 43 |
|