Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, Volume 14, Issue 3, Pages 316–320
DOI: https://doi.org/10.18500/1816-9791-2014-14-3-316-320
(Mi isu516)
 

This article is cited in 5 scientific papers (total in 5 papers)

Mathematics

New Properties of Almost Nilpotent Variety of Exponent 2

O. V. Shulezhko

Ulyanovsk State University, 42, Leo Tolstoy str., Ulyanovsk, 432970, Russia
Full-text PDF (132 kB) Citations (5)
References:
Abstract: In the presented work we consider numerical characteristics of almost nilpotent variety of exponent 2, which was first constructing in article [1]. The main result of this paper is introduce the exact values of the multiplicities of the irreducible modules appearing in the expansion of the multilinear part of the variety. Meanwhile, we obtain as a consequence the formulas of codimension and colength of the variety of exponent 2.
Key words: variety, exponent of variety, codimension, colength.
Bibliographic databases:
Document Type: Article
UDC: 512.5
Language: Russian
Citation: O. V. Shulezhko, “New Properties of Almost Nilpotent Variety of Exponent 2”, Izv. Saratov Univ. Math. Mech. Inform., 14:3 (2014), 316–320
Citation in format AMSBIB
\Bibitem{Shu14}
\by O.~V.~Shulezhko
\paper New Properties of Almost Nilpotent Variety of Exponent~2
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2014
\vol 14
\issue 3
\pages 316--320
\mathnet{http://mi.mathnet.ru/isu516}
\crossref{https://doi.org/10.18500/1816-9791-2014-14-3-316-320}
\elib{https://elibrary.ru/item.asp?id=21967153}
Linking options:
  • https://www.mathnet.ru/eng/isu516
  • https://www.mathnet.ru/eng/isu/v14/i3/p316
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :63
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024