Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, Volume 14, Issue 3, Pages 311–316
DOI: https://doi.org/10.18500/1816-9791-2014-14-3-311-316
(Mi isu515)
 

Mathematics

The Gradient Methods for Solving the Cauchy Problem for a Nonlinear ODE System

A. V. Fominyh

Saint Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russia
References:
Abstract: The article considers the Cauchy problem for a nonlinear system of ODE. This problem is reduced to the variational problem of minimizing some functional on the whole space. For this functional necessary minimum conditions are presented. On the basis of these conditions the steepest descent method and the method of conjugate directions for the considered problem are described. Numerical examples of the implementation of these methods are presented. The Cauchy problem with the system which is not solved with respect to derivatives is additionally investigated.
Key words: variation, Cauchy problem, square functional, Gato gradient, steepest descent method, conjugate directions method.
Bibliographic databases:
Document Type: Article
UDC: 517.97
Language: Russian
Citation: A. V. Fominyh, “The Gradient Methods for Solving the Cauchy Problem for a Nonlinear ODE System”, Izv. Saratov Univ. Math. Mech. Inform., 14:3 (2014), 311–316
Citation in format AMSBIB
\Bibitem{Fom14}
\by A.~V.~Fominyh
\paper The Gradient Methods for Solving the Cauchy Problem for a Nonlinear ODE System
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2014
\vol 14
\issue 3
\pages 311--316
\mathnet{http://mi.mathnet.ru/isu515}
\crossref{https://doi.org/10.18500/1816-9791-2014-14-3-311-316}
\elib{https://elibrary.ru/item.asp?id=21967152}
Linking options:
  • https://www.mathnet.ru/eng/isu515
  • https://www.mathnet.ru/eng/isu/v14/i3/p311
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:381
    Full-text PDF :116
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024