Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, Volume 14, Issue 3, Pages 305–311
DOI: https://doi.org/10.18500/1816-9791-2014-14-3-305-311
(Mi isu514)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

Approximation of the Riemann–Liouville Integrals by Algebraic Polynomials on the Segment

A. A. Tyleneva

Saratov State University named after N. G. Chernyshevsky
Full-text PDF (176 kB) Citations (2)
References:
Abstract: The direct approximation theorem by algebraic polynomials is proved for Riemann–Liouville integrals of order $r>0$. As a corollary, we obtain asymptotic equalities for $\varepsilon$-entropy of the image of a Hölder type class under Riemann–Liouville integration operator.
Key words: $p$-variation metric, $L^p$ space, Riemann–Liouville integral, best approximation, algebraic polynomials, $\varepsilon$-entropy.
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: A. A. Tyleneva, “Approximation of the Riemann–Liouville Integrals by Algebraic Polynomials on the Segment”, Izv. Saratov Univ. Math. Mech. Inform., 14:3 (2014), 305–311
Citation in format AMSBIB
\Bibitem{Tyu14}
\by A.~A.~Tyleneva
\paper Approximation of the Riemann--Liouville Integrals by Algebraic Polynomials on the Segment
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2014
\vol 14
\issue 3
\pages 305--311
\mathnet{http://mi.mathnet.ru/isu514}
\crossref{https://doi.org/10.18500/1816-9791-2014-14-3-305-311}
\elib{https://elibrary.ru/item.asp?id=21967151}
Linking options:
  • https://www.mathnet.ru/eng/isu514
  • https://www.mathnet.ru/eng/isu/v14/i3/p305
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:296
    Full-text PDF :97
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024