Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, Volume 14, Issue 3, Pages 273–279
DOI: https://doi.org/10.18500/1816-9791-2014-14-3-273-279
(Mi isu510)
 

Mathematics

Numerical Solution of Inverse Spectral Problems for Sturm–Liouville Operators with Discontinuous Potentials

L. S. Efremova

Saratov State University, 83, Astrakhanskaya str., Saratov, 410012, Russia
References:
Abstract: We consider Sturm–Liouville differential operator with potential having a finite number of simple discontinuities. This paper is devoted to the numerical solution of such inverse spectral problems. The main result of this work is a procedure that is able to recover both the points of discontinuities as well as the heights of the jumps. Following, using these results, we may apply a suitable numerical method (for example, the generalized Rundell–Sacks algorithm with a special form of the reference potential) to reconstruct the potential more precisely.
Key words: Sturm–Liouville differential operator, inverse spectral problem, discontinuous potential, numerical solution.
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: L. S. Efremova, “Numerical Solution of Inverse Spectral Problems for Sturm–Liouville Operators with Discontinuous Potentials”, Izv. Saratov Univ. Math. Mech. Inform., 14:3 (2014), 273–279
Citation in format AMSBIB
\Bibitem{Efr14}
\by L.~S.~Efremova
\paper Numerical Solution of Inverse Spectral Problems for Sturm--Liouville Operators with Discontinuous Potentials
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2014
\vol 14
\issue 3
\pages 273--279
\mathnet{http://mi.mathnet.ru/isu510}
\crossref{https://doi.org/10.18500/1816-9791-2014-14-3-273-279}
\elib{https://elibrary.ru/item.asp?id=21967147}
Linking options:
  • https://www.mathnet.ru/eng/isu510
  • https://www.mathnet.ru/eng/isu/v14/i3/p273
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:327
    Full-text PDF :134
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024