Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, Volume 14, Issue 3, Pages 262–267
DOI: https://doi.org/10.18500/1816-9791-2014-14-3-262-267
(Mi isu508)
 

Mathematics

Asymptotic Values of Analytic Functions Connected with a Prime End of a Domain

E. G. Ganenkova

Petrozavodsk State University, 33, Lenina ave., Petrozavodsk, 185910, Russia
References:
Abstract: In 1954 M. Heins proved that for any analytic set $A$, containing the infinity, there exists an entire function with asymptotic set $A.$ In the article we prove the following analog of Heins's theorem: for a multi-connected planar domain $D$ with an isolated boundary fragment, an analytic set $A$, $\infty\in A$, and a prime end of $D$ with impression $p$ there exists an analytic in $D$ function $f$ such that $A$ is the set of asymptotic values of $f$ connected with $p$.
Key words: asymptotic set, prime end, analytic function, analytic set.
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: E. G. Ganenkova, “Asymptotic Values of Analytic Functions Connected with a Prime End of a Domain”, Izv. Saratov Univ. Math. Mech. Inform., 14:3 (2014), 262–267
Citation in format AMSBIB
\Bibitem{Kom14}
\by E.~G.~Ganenkova
\paper Asymptotic Values of Analytic Functions Connected with a Prime End of~a~Domain
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2014
\vol 14
\issue 3
\pages 262--267
\mathnet{http://mi.mathnet.ru/isu508}
\crossref{https://doi.org/10.18500/1816-9791-2014-14-3-262-267}
\elib{https://elibrary.ru/item.asp?id=21967145}
Linking options:
  • https://www.mathnet.ru/eng/isu508
  • https://www.mathnet.ru/eng/isu/v14/i3/p262
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :97
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024