Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, Volume 14, Issue 3, Pages 251–262
DOI: https://doi.org/10.18500/1816-9791-2014-14-3-251-262
(Mi isu507)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

Synthesis in the Polynomial Kernel of Two Analytic Functionals

T. A. Volkovaya

Kuban State University, Branch in Slavyansk-on-Kuban, 200, Kubanskaya str., Slavyansk-on-Kuban, 353560, Russia
Full-text PDF (242 kB) Citations (2)
References:
Abstract: Let $\pi $ be an entire function of minimal type and order $\rho=1$ and let $\pi (D)$ be the corresponding differential operator. Maximal $\pi (D)$-invariant subspace of the kernel of an analytic functional is called its $\mathbf{C}[\pi ]$-kernel. $\mathbf{C}[\pi ]$-kernel of a system of analytic functionals is called the intersection of their $\mathbf{C}[\pi ]$-kernels. The paper describes the conditions which allow synthesis of $\mathbf{C}[\pi ]$-kernels of two analytical functionals with respect to the root elements of the differential operator $\pi (D)$.
Key words: spectral synthesis, differential operator of infinite order, invariant subspaces, submodules of entire functions.
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: T. A. Volkovaya, “Synthesis in the Polynomial Kernel of Two Analytic Functionals”, Izv. Saratov Univ. Math. Mech. Inform., 14:3 (2014), 251–262
Citation in format AMSBIB
\Bibitem{Vol14}
\by T.~A.~Volkovaya
\paper Synthesis in the Polynomial Kernel of Two Analytic Functionals
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2014
\vol 14
\issue 3
\pages 251--262
\mathnet{http://mi.mathnet.ru/isu507}
\crossref{https://doi.org/10.18500/1816-9791-2014-14-3-251-262}
\elib{https://elibrary.ru/item.asp?id=21967144}
Linking options:
  • https://www.mathnet.ru/eng/isu507
  • https://www.mathnet.ru/eng/isu/v14/i3/p251
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :77
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024