Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, Volume 14, Issue 2, Pages 171–198
DOI: https://doi.org/10.18500/1816-9791-2014-14-2-171-198
(Mi isu501)
 

This article is cited in 7 scientific papers (total in 7 papers)

Mathematics

Classical solution by the Fourier method of mixed problems with minimum requirements on the initial data

A. P. Khromova, M. Sh. Burlutskayab

a Saratov State University, 83, Astrakhanskaya str., 410012, Saratov, Russia
b Voronezh State University, 1, Universitetskaya pl., 394006, Voronezh, Russia
Full-text PDF (346 kB) Citations (7)
References:
Abstract: The article gives a new short proof the V. A. Chernyatin theorem about the classical solution of the Fourier method of the mixed problem for the wave equation with fixed ends with minimum requirements on the initial data. Next, a similar problem for the simplest functional differential equation of the first order with involution in the case of the fixed end is considered, and also obtained definitive results. These results are due to a significant use of ideas A. N. Krylova to accelerate the convergence of series, like Fourier series. The results for other similar mixed problems given without proof.
Key words: mixed problem, Fourier method, involution, classical solution, asymptotic form of eigenvalues and eigenfunctions, Dirac system.
Bibliographic databases:
Document Type: Article
UDC: 517.95+517.984
Language: Russian
Citation: A. P. Khromov, M. Sh. Burlutskaya, “Classical solution by the Fourier method of mixed problems with minimum requirements on the initial data”, Izv. Saratov Univ. Math. Mech. Inform., 14:2 (2014), 171–198
Citation in format AMSBIB
\Bibitem{KhrBur14}
\by A.~P.~Khromov, M.~Sh.~Burlutskaya
\paper Classical solution by the Fourier method of mixed problems with minimum requirements on the initial data
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2014
\vol 14
\issue 2
\pages 171--198
\mathnet{http://mi.mathnet.ru/isu501}
\crossref{https://doi.org/10.18500/1816-9791-2014-14-2-171-198}
\elib{https://elibrary.ru/item.asp?id=21719217}
Linking options:
  • https://www.mathnet.ru/eng/isu501
  • https://www.mathnet.ru/eng/isu/v14/i2/p171
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:787
    Full-text PDF :251
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024