Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, Volume 14, Issue 2, Pages 144–150
DOI: https://doi.org/10.18500/1816-9791-2014-14-2-144-150
(Mi isu497)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

One counterexample of shape-preserving approximation

M. G. Pleshakov, S. V. Tyshkevich

Saratov State University, 83, Astrakhanskaya str., 410012, Saratov, Russia
Full-text PDF (161 kB) Citations (2)
References:
Abstract: Let $2s$ points $y_i=-\pi\le y_{2s}<\ldots<y_1<\pi$ be given. Using these points, we define the points $y_i$ for all integer indices $i$ by the equality $y_i=y_{i+2s}+2\pi$. We shall write $f\in\Delta^{(1)}(Y)$ if $f$ is a $2\pi$-periodic function and $f$ does not decrease on $[y_i,~y_{i-1}]$ if $i$ is odd; and $f$ does not increase on $[y_i,y_{i-1}]$ if $i$ is even. We denote $E_n^{(1)}(f;Y)$ the value of the best uniform comonotone approximation. In this article the following counterexample of comonotone approximation is proved.
Example. For each $k\in\mathbb N$, $k>2$, and $n\in\mathbb N$ there a function $f(x):=f(x;s,Y,n,k)$ exists, such that $f\in\Delta^{(1)}(Y)$ and
$$ E_n^{(1)}(f;Y)>B_Yn^{\frac k2-1}\omega_k\left(f;\frac1n\right), $$
where $B_Y=\mathrm{cons}$t, depending only on $Y$ and $k$; $\omega_k$ is the modulus of smoothness of order $k$, of $f$.
Key words: trigonometric polynomials, polynomial approximation, shape-preserving.
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. G. Pleshakov, S. V. Tyshkevich, “One counterexample of shape-preserving approximation”, Izv. Saratov Univ. Math. Mech. Inform., 14:2 (2014), 144–150
Citation in format AMSBIB
\Bibitem{PleTys14}
\by M.~G.~Pleshakov, S.~V.~Tyshkevich
\paper One counterexample of shape-preserving approximation
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2014
\vol 14
\issue 2
\pages 144--150
\mathnet{http://mi.mathnet.ru/isu497}
\crossref{https://doi.org/10.18500/1816-9791-2014-14-2-144-150}
\elib{https://elibrary.ru/item.asp?id=21719213}
Linking options:
  • https://www.mathnet.ru/eng/isu497
  • https://www.mathnet.ru/eng/isu/v14/i2/p144
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:241
    Full-text PDF :66
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024