Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, Volume 13, Issue 4(2), Pages 23–28
DOI: https://doi.org/10.18500/1816-9791-2013-13-4-23-28
(Mi isu454)
 

Mathematics

Semisimple graded rings

I. N. Balaba, E. N. Krasnova

Leo Tolstoy Tula State Pedagogical University, Russia, 300026, Tula, Lenina pr., 125
References:
Abstract: The graded version of Wedderburn–Artin theorem is obtained. It gives description of semisimple $G$-graded ring for arbitrary group $G$. Homological classification of graded semisimple rings is given.
Key words: graded rings, graded modules, semisimple rings.
Bibliographic databases:
Document Type: Article
UDC: 512.522
Language: Russian
Citation: I. N. Balaba, E. N. Krasnova, “Semisimple graded rings”, Izv. Saratov Univ. Math. Mech. Inform., 13:4(2) (2013), 23–28
Citation in format AMSBIB
\Bibitem{BalKra13}
\by I.~N.~Balaba, E.~N.~Krasnova
\paper Semisimple graded rings
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2013
\vol 13
\issue 4(2)
\pages 23--28
\mathnet{http://mi.mathnet.ru/isu454}
\crossref{https://doi.org/10.18500/1816-9791-2013-13-4-23-28}
Linking options:
  • https://www.mathnet.ru/eng/isu454
  • https://www.mathnet.ru/eng/isu/v13/i7/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024