Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2009, Volume 9, Issue 2, Pages 44–49
DOI: https://doi.org/10.18500/1816-9791-2009-9-2-44-49
(Mi isu44)
 

Mathematics

About asymptotics of Chebyshev polynomials orthogonal on an uniform net

E. Sh. Sultanov

Dagestan Center of Science RAN, Department of Mathematics and Informatics
References:
Abstract: In this article asymptotic properties of the Chebyshev polynomials $T_n(x,N)$ ($0\le n\le N-1$) orthogonal on an uniform net $\Omega_N=\{0,1,\dots,N-1\}$ with the constant weight $\mu(x)=\frac2N$ (discrete analog of the Legendre polynomials) by $n=O(N^{\frac12})$, $N\to\infty$ were researched. The asymptotic formula that is relating polynomials $T_n(x,N)$ with Legendre polynomials $Pn(t)$ for $x=\frac N2(1+t)-\frac12$ was determined. The uniform estimation of remainder term of the formula relative to $t\in[-1,1]$, that in turn allows to prove unimprovable estimation of Chebyshev polynomials $T_n(x,N)$, was obtained.
Key words: orthogonal polynomials, asymptotics.
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: E. Sh. Sultanov, “About asymptotics of Chebyshev polynomials orthogonal on an uniform net”, Izv. Saratov Univ. Math. Mech. Inform., 9:2 (2009), 44–49
Citation in format AMSBIB
\Bibitem{Sul09}
\by E.~Sh.~Sultanov
\paper About asymptotics of Chebyshev polynomials orthogonal on an uniform net
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2009
\vol 9
\issue 2
\pages 44--49
\mathnet{http://mi.mathnet.ru/isu44}
\crossref{https://doi.org/10.18500/1816-9791-2009-9-2-44-49}
\elib{https://elibrary.ru/item.asp?id=12417508}
Linking options:
  • https://www.mathnet.ru/eng/isu44
  • https://www.mathnet.ru/eng/isu/v9/i2/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:387
    Full-text PDF :113
    References:51
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025