Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, Volume 13, Issue 3, Pages 95–99
DOI: https://doi.org/10.18500/1816-9791-2013-13-3-95-99
(Mi isu437)
 

Computer science

On the error of approximation by means of scenario trees with depth 1

E. A. Zakharova, S. P. Sidorov

Saratov State University, Russia, 410012, Saratov, Astrahanskaya st., 83
References:
Abstract: Let $\Lambda_n$ denote the set of scenario trees with depth 1 and $n$ scenarios. Let $X=(0\le x_1<\dots<x_n\le1)$ and let $\Lambda_n(X)$ denote the set of all scenario trees of depth 1 with the scenarios $X=(0\le x_1<\dots<x_n\le1)$. Let $G$ be a probability distribution defined on $[0,1]$ and $H$ be a subset of measurable functions defined on $[0,1]$. Let $d_{H,X}(G)=\inf_{\tilde G\in\Lambda_n(X)}d_H(G,\tilde G)$ and $d_H(G)=\inf_{\tilde G\in\Lambda_n}d_H(G,\tilde G)$, where $d_H(G,\tilde G):=\sup_{h\in H}\left|\int h\,dG-\int h\,d\tilde G\right|$. The main goal of the paper is to estimate $d_H(G,X)$ and $d_H(G)$ in the case when the set $H$ is a subset of all algebraical polynomials of degree $\leq n$. Thus, the paper is examined the error of approximation of a continuous distribution $G$ by means of scenario trees with depth 1 and matching the first $n$ moments.
Key words: scenario trees, method of moments.
Bibliographic databases:
Document Type: Article
UDC: 519.711+519.712+517.51
Language: Russian
Citation: E. A. Zakharova, S. P. Sidorov, “On the error of approximation by means of scenario trees with depth 1”, Izv. Saratov Univ. Math. Mech. Inform., 13:3 (2013), 95–99
Citation in format AMSBIB
\Bibitem{ZakSid13}
\by E.~A.~Zakharova, S.~P.~Sidorov
\paper On the error of approximation by means of scenario trees with depth~1
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2013
\vol 13
\issue 3
\pages 95--99
\mathnet{http://mi.mathnet.ru/isu437}
\crossref{https://doi.org/10.18500/1816-9791-2013-13-3-95-99}
Linking options:
  • https://www.mathnet.ru/eng/isu437
  • https://www.mathnet.ru/eng/isu/v13/i5/p95
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:194
    Full-text PDF :51
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024