Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, Volume 13, Issue 3, Pages 9–14
DOI: https://doi.org/10.18500/1816-9791-2013-13-3-9-14
(Mi isu423)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Jordan–Dirichlet theorem for functional differential operator with involution

M. Sh. Burlutskaya

Voronezh State University, Russia, 394006, Voronezh, Universitetskaya pl., 1
Full-text PDF (142 kB) Citations (1)
References:
Abstract: In this paper the problem of decomposability of a function $f(x)$ into Fourier series with respect to the system of eigenfunctions of a functional-differential operator with involution $Ly=y'(1-x)+\alpha y'(x)+p_1(x)y(x)+p_2(x)y(1-x)$, $y(0)=\gamma y(1)$ is investigated. Based on the study of the resolvent of the operator easier and using the method of contour integration of the resolvent, we obtain the sufficient conditions for the convergence of the Fourier series for a function $f(x)$ (analogue of the Jordan–Dirichlet's theorem).
Key words: functional-differential operator, involution, equiconvergence, Fourier series.
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: M. Sh. Burlutskaya, “Jordan–Dirichlet theorem for functional differential operator with involution”, Izv. Saratov Univ. Math. Mech. Inform., 13:3 (2013), 9–14
Citation in format AMSBIB
\Bibitem{Bur13}
\by M.~Sh.~Burlutskaya
\paper Jordan--Dirichlet theorem for functional differential operator with involution
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2013
\vol 13
\issue 3
\pages 9--14
\mathnet{http://mi.mathnet.ru/isu423}
\crossref{https://doi.org/10.18500/1816-9791-2013-13-3-9-14}
Linking options:
  • https://www.mathnet.ru/eng/isu423
  • https://www.mathnet.ru/eng/isu/v13/i5/p9
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024