Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, Volume 13, Issue 2(1), Pages 100–105
DOI: https://doi.org/10.18500/1816-9791-2013-13-2-1-100-105
(Mi isu402)
 

Computer science

T-irreducible extension for union of paths and cycles

D. U. Osipov

Saratov State University, Russia, 410012, Saratov, Astrahanskaya st., 83
References:
Abstract: A graph $H$ with $n+1$ nodes is an extension of a graph $G$ with $n$ nodes if each maximal subgraph of $H$ contains $G$. Trivial extension of a graph $G$ is the connection of graph $G$ and the singleton graph (i.e. we add one node to the graph $G$ and this node join with each node of $G$). T-irreducible extension of graph $G$ is an extension of the graph $G$ which is obtained by removing maximal set of edges from the trivial extension of $G$. One of T-irreducible extensions is constructed for an arbitrary union of cycles and paths.
Key words: graph, T-irreducible extensions, union of paths and cycles.
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: D. U. Osipov, “T-irreducible extension for union of paths and cycles”, Izv. Saratov Univ. Math. Mech. Inform., 13:2(1) (2013), 100–105
Citation in format AMSBIB
\Bibitem{Osi13}
\by D.~U.~Osipov
\paper T-irreducible extension for union of paths and cycles
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2013
\vol 13
\issue 2(1)
\pages 100--105
\mathnet{http://mi.mathnet.ru/isu402}
\crossref{https://doi.org/10.18500/1816-9791-2013-13-2-1-100-105}
\elib{https://elibrary.ru/item.asp?id=21813642}
Linking options:
  • https://www.mathnet.ru/eng/isu402
  • https://www.mathnet.ru/eng/isu/v13/i3/p100
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024