|
This article is cited in 3 scientific papers (total in 3 papers)
Mathematics
Approximation Properties of Some Types of Linear Means in Space $L^{p(x)}_{2\pi}$
T. N. Shakh-Emirov Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala
Abstract:
Approximative properties of Norlund $\mathcal{N}_{n}(f,x)$ and Riesz $\mathcal{R}_{n}(f,x)$ means for trigonometric Fourier series in Lebesgue space of variable exponent $L^{p(x)}_{2\pi}$ are considered. Under certain conditions on Norlund and Riesz summation methods it is proved that the estimates $\|f-\mathcal{N}_{n}\|_{p(\cdot)}\le CM\delta^{\alpha}$, $\|f-\mathcal{R}_{n}\|_{p(\cdot)}\le CM\delta^{\alpha}$ hold for $f\in \mathrm{Lip}_{p(\cdot)}(\alpha,M)$ ($0<\alpha\le1$).
Key words:
Lebesgue and Sobolev spaces of variable exponent, module of continuity.
Citation:
T. N. Shakh-Emirov, “Approximation Properties of Some Types of Linear Means in Space $L^{p(x)}_{2\pi}$”, Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013), 108–112
Linking options:
https://www.mathnet.ru/eng/isu387 https://www.mathnet.ru/eng/isu/v13/i2/p108
|
|