Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, Volume 13, Issue 1(2), Pages 108–112
DOI: https://doi.org/10.18500/1816-9791-2013-13-1-2-108-112
(Mi isu387)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematics

Approximation Properties of Some Types of Linear Means in Space $L^{p(x)}_{2\pi}$

T. N. Shakh-Emirov

Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala
Full-text PDF (155 kB) Citations (3)
References:
Abstract: Approximative properties of Norlund $\mathcal{N}_{n}(f,x)$ and Riesz $\mathcal{R}_{n}(f,x)$ means for trigonometric Fourier series in Lebesgue space of variable exponent $L^{p(x)}_{2\pi}$ are considered. Under certain conditions on Norlund and Riesz summation methods it is proved that the estimates $\|f-\mathcal{N}_{n}\|_{p(\cdot)}\le CM\delta^{\alpha}$, $\|f-\mathcal{R}_{n}\|_{p(\cdot)}\le CM\delta^{\alpha}$ hold for $f\in \mathrm{Lip}_{p(\cdot)}(\alpha,M)$ ($0<\alpha\le1$).
Key words: Lebesgue and Sobolev spaces of variable exponent, module of continuity.
Bibliographic databases:
Document Type: Article
UDC: 517.518.8
Language: Russian
Citation: T. N. Shakh-Emirov, “Approximation Properties of Some Types of Linear Means in Space $L^{p(x)}_{2\pi}$”, Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013), 108–112
Citation in format AMSBIB
\Bibitem{Sha13}
\by T.~N.~Shakh-Emirov
\paper Approximation Properties of Some Types of Linear Means in Space $L^{p(x)}_{2\pi}$
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2013
\vol 13
\issue 1(2)
\pages 108--112
\mathnet{http://mi.mathnet.ru/isu387}
\crossref{https://doi.org/10.18500/1816-9791-2013-13-1-2-108-112}
Linking options:
  • https://www.mathnet.ru/eng/isu387
  • https://www.mathnet.ru/eng/isu/v13/i2/p108
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024