Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, Volume 13, Issue 1(2), Pages 104–108
DOI: https://doi.org/10.18500/1816-9791-2013-13-1-2-104-108
(Mi isu386)
 

Mathematics

Finite Limit Series on Chebyshev Polynomials, Orthogonal on Uniform Nets

T. I. Sharapudinov

Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala
References:
Abstract: In the paper we construct new series, called finite limit series on Chebyshev (Hahn) polynomials $\tau^{\alpha,\beta}_n(x)=\tau^{\alpha,\beta}_n(x,N)$, orthogonal on uniform net $\{0,1,\ldots,N-1\}$. Their partial sums $S_n(f;x)$ equal in boundary points $x=0$ и $x=N-1$ with approximated function $f(x)$. Construction of finite limit series based on the passage to the limit with $\alpha\to-1$ of Fourier series $\sum\limits_{k=0}^{N-1}f_k^\alpha \tau_k^{\alpha,\alpha}(x,N)$ on Chebyshev (Hahn) polynomials $\tau_n^{\alpha,\alpha}(x,N)$, orthonormal on uniform net $\{0,1,\ldots,N-1\}$.
Key words: Fourier series, orthogonal polynomials.
Bibliographic databases:
Document Type: Article
UDC: 517.518.82
Language: Russian
Citation: T. I. Sharapudinov, “Finite Limit Series on Chebyshev Polynomials, Orthogonal on Uniform Nets”, Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013), 104–108
Citation in format AMSBIB
\Bibitem{Sha13}
\by T.~I.~Sharapudinov
\paper Finite Limit Series on Chebyshev Polynomials, Orthogonal on Uniform Nets
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2013
\vol 13
\issue 1(2)
\pages 104--108
\mathnet{http://mi.mathnet.ru/isu386}
\crossref{https://doi.org/10.18500/1816-9791-2013-13-1-2-104-108}
\elib{https://elibrary.ru/item.asp?id=21976888}
Linking options:
  • https://www.mathnet.ru/eng/isu386
  • https://www.mathnet.ru/eng/isu/v13/i2/p104
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024