Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, Volume 13, Issue 1(2), Pages 99–104
DOI: https://doi.org/10.18500/1816-9791-2013-13-1-2-99-104
(Mi isu385)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematics

About the Fundamental Characteristics of the Lagrange Interpolation Polynomials Family

I. A. Shakirov

Naberezhnochelninskii State Pedagogical Institute
Full-text PDF (161 kB) Citations (3)
References:
Abstract: For the Lagrange interpolation polynomials family, determined in the even number of nodes, it is obtained various explicit (unmodulus) forms of the Lebesque functions. They are divided into uncrossing classes, which are consecutively studied using the elements of differential calculus then. The interdependence is established between the functions, as so as between the Lebesque constants from these classes.
Key words: Lagrange trigonometric polynomials, generalized Dirichlet kernel, Lebesque functions and constants.
Bibliographic databases:
Document Type: Article
UDC: 591.65
Language: Russian
Citation: I. A. Shakirov, “About the Fundamental Characteristics of the Lagrange Interpolation Polynomials Family”, Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013), 99–104
Citation in format AMSBIB
\Bibitem{Sha13}
\by I.~A.~Shakirov
\paper About the Fundamental Characteristics of the Lagrange Interpolation Polynomials Family
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2013
\vol 13
\issue 1(2)
\pages 99--104
\mathnet{http://mi.mathnet.ru/isu385}
\crossref{https://doi.org/10.18500/1816-9791-2013-13-1-2-99-104}
\elib{https://elibrary.ru/item.asp?id=21976887}
Linking options:
  • https://www.mathnet.ru/eng/isu385
  • https://www.mathnet.ru/eng/isu/v13/i2/p99
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024