|
This article is cited in 6 scientific papers (total in 6 papers)
Mathematics
Hermitian Approximation of Two Exponents
A. P. Starovoitov Gomel State University
Abstract:
We study the asymptotic properties of Hermite–Pade approximants $\{\pi_{n,\,m}^j(z;\,e^{\lambda_j\,\xi})\}_{j=1}^2$ for a system consisting of functions $\{e^{\lambda_1 z},e^{\lambda_2 z}\}$. In particular, we determine asymptotic behavior of differences $e^{\lambda_j\,z}-\pi_{n,\,m}^j(z;\,e^{\lambda_j\,\xi})$ for $j=1,2$ and $n\rightarrow\infty$ for any complex number $z$. The obtained results supplement research of Pade, Perron, D. Braess and A. I. Aptekarev dealing with study of the convergence of joinnt Pade approximants for systems of exponents.
Key words:
perffect system of functions, joint Pade approximant, Hermite–Pade approximants, asymptotic equality, Hermite integrals.
Citation:
A. P. Starovoitov, “Hermitian Approximation of Two Exponents”, Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013), 87–91
Linking options:
https://www.mathnet.ru/eng/isu382 https://www.mathnet.ru/eng/isu/v13/i2/p87
|
|