Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, Volume 13, Issue 1(2), Pages 67–71
DOI: https://doi.org/10.18500/1816-9791-2013-13-1-2-67-71
(Mi isu377)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Koenigs Function and Fractional Iteration of Functions Analytic in the Unit Disk with Real Coefficients and Fixed Points

O. S. Kudryavtseva

The Volzhsky Institute of Humanities
Full-text PDF (141 kB) Citations (1)
References:
Abstract: The present paper deals with the problem of fractional iteration of functions analytic in the unit disk, with real Taylor's coefficients. It is assumed that there exist interior and boundary fixed points. The solution is given in terms of the Koenigs function.
Key words: fractional iterates, one-parameter semigroup, infinitesimal generator, Koenigs function, fixed points.
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: O. S. Kudryavtseva, “Koenigs Function and Fractional Iteration of Functions Analytic in the Unit Disk with Real Coefficients and Fixed Points”, Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013), 67–71
Citation in format AMSBIB
\Bibitem{Kud13}
\by O.~S.~Kudryavtseva
\paper Koenigs Function and Fractional Iteration of Functions Analytic in the Unit Disk with Real Coefficients and Fixed Points
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2013
\vol 13
\issue 1(2)
\pages 67--71
\mathnet{http://mi.mathnet.ru/isu377}
\crossref{https://doi.org/10.18500/1816-9791-2013-13-1-2-67-71}
Linking options:
  • https://www.mathnet.ru/eng/isu377
  • https://www.mathnet.ru/eng/isu/v13/i2/p67
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:430
    Full-text PDF :124
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024