Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, Volume 13, Issue 1(1), Pages 45–49
DOI: https://doi.org/10.18500/1816-9791-2013-13-1-1-45-49
(Mi isu351)
 

This article is cited in 8 scientific papers (total in 8 papers)

Mathematics

Approximation of Smooth Functions in $L^{p(x)}_{2\pi}$ by Vallee-Poussin Means

I. I. Sharapudinov

Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala
Full-text PDF (145 kB) Citations (8)
References:
Abstract: Variable exponent $p(x)$ Lebesgue spaces $L^{p(x)}_{2\pi}$ is considered. For $f\in L^{p(x)}_{2\pi}$ Vallee–Poussin means $V_m^n(f,x)$ can be defined as $V_m^n(f,x)=\frac{1}{m+1}\sum\limits_{l=0}^mS_{n+l}(f,x),$ where $S_{k}(f,x)$ — partial Fourier sum of $f(x)$ of order $k$. Approximative properties of operators $V_m^n(f)=V_m^n(f,x)$ are investigated in $L^{p(x)}_{2\pi}$. Let $p(x)\ge1$ be $2\pi$-periodical variable exponent that satisfies Dini–Lipschitz condition. When $m=n-1$ and $m=n$ the following estimate is proved: $\|f-V_m^n(f)\|_{p(\cdot)}\le \frac{c_r(p)}{n^r}E_n(f^{(r)})_{p(\cdot)}$, where $E_n(f^{(r)})_{p(\cdot)}$ is the best approximation of function $f^{(r)}(x)$ by trigonometric polynomials of order $n$ in $L^{p(x)}_{2\pi}$.
Key words: variable exponent Lebesgue and Sobolev spaces, approximation by trigonometric polynomials, Vallee–Poussin means.
Bibliographic databases:
Document Type: Article
UDC: 517.587
Language: Russian
Citation: I. I. Sharapudinov, “Approximation of Smooth Functions in $L^{p(x)}_{2\pi}$ by Vallee-Poussin Means”, Izv. Saratov Univ. Math. Mech. Inform., 13:1(1) (2013), 45–49
Citation in format AMSBIB
\Bibitem{Sha13}
\by I.~I.~Sharapudinov
\paper Approximation of Smooth Functions in $L^{p(x)}_{2\pi}$ by Vallee-Poussin Means
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2013
\vol 13
\issue 1(1)
\pages 45--49
\mathnet{http://mi.mathnet.ru/isu351}
\crossref{https://doi.org/10.18500/1816-9791-2013-13-1-1-45-49}
\elib{https://elibrary.ru/item.asp?id=21976850}
Linking options:
  • https://www.mathnet.ru/eng/isu351
  • https://www.mathnet.ru/eng/isu/v13/i1/p45
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024