Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, Volume 13, Issue 1(1), Pages 36–40
DOI: https://doi.org/10.18500/1816-9791-2013-13-1-1-36-40
(Mi isu349)
 

Mathematics

Uniform Convergence of the Series with Respect to Multiplicative Systems

R. N. Fadeev

Saratov State University
References:
Abstract: Two theorems on uniform convergence and boundedness of partial sums for the series with generalized monotone coefficients with respect to multiplicative systems are proved.
Key words: multiplicative system, uniform convergence.
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: R. N. Fadeev, “Uniform Convergence of the Series with Respect to Multiplicative Systems”, Izv. Saratov Univ. Math. Mech. Inform., 13:1(1) (2013), 36–40
Citation in format AMSBIB
\Bibitem{Fad13}
\by R.~N.~Fadeev
\paper Uniform Convergence of the Series with Respect to Multiplicative Systems
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2013
\vol 13
\issue 1(1)
\pages 36--40
\mathnet{http://mi.mathnet.ru/isu349}
\crossref{https://doi.org/10.18500/1816-9791-2013-13-1-1-36-40}
Linking options:
  • https://www.mathnet.ru/eng/isu349
  • https://www.mathnet.ru/eng/isu/v13/i1/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024