Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, Volume 13, Issue 1(1), Pages 8–13
DOI: https://doi.org/10.18500/1816-9791-2013-13-1-1-8-13
(Mi isu343)
 

Mathematics

Qualitative Properties of Mild Solutions of the Cauchy Problem

N. S. Kaluzhina

Voronezh State University
References:
Abstract: In this paper we study the qualitative properties of a mild solution of the problem Cauchy problem for the heat equation. We prove that every mild Cauchy problem is a slowly varying at infinity function. The result is applied to study solutions of the Neumann problem for the heat equation.
Key words: Cauchy problem, slowly varying at infinity function, a mild solution of the Cauchy problem, Neumann problem for the heat equation.
Bibliographic databases:
Document Type: Article
UDC: 501.1
Language: Russian
Citation: N. S. Kaluzhina, “Qualitative Properties of Mild Solutions of the Cauchy Problem”, Izv. Saratov Univ. Math. Mech. Inform., 13:1(1) (2013), 8–13
Citation in format AMSBIB
\Bibitem{Kal13}
\by N.~S.~Kaluzhina
\paper Qualitative Properties of Mild Solutions of the Cauchy Problem
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2013
\vol 13
\issue 1(1)
\pages 8--13
\mathnet{http://mi.mathnet.ru/isu343}
\crossref{https://doi.org/10.18500/1816-9791-2013-13-1-1-8-13}
Linking options:
  • https://www.mathnet.ru/eng/isu343
  • https://www.mathnet.ru/eng/isu/v13/i1/p8
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:467
    Full-text PDF :125
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024