Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2011, Volume 11, Issue 3(2), Pages 20–29
DOI: https://doi.org/10.18500/1816-9791-2011-11-3-2-20-29
(Mi isu244)
 

Mathematics

Generalization of method A. A. Dorodnicyn close calculation of eigenvalues and eigenvectors of symmetric matrices on case of self-conjugate discrete operators

E. M. Maleko

Magnitogorsk State Technical University, Chair of Mathematics
References:
Abstract: Let the discrete self-conjugate operator $A$ operates in separable Hilbert space $\mathbb H$ and has the kernel resolvent with simple spectrum. Self-conjugate and limited operator $B$ operates also in $\mathbb H$. Then it is possible to find such number $\varepsilon>0$, that eigenvalues and eigenfunctions of the perturbation operator $A+\varepsilon B$ will be calculated on a method of Dorodnicyn.
Key words: Hilbert space, perturbation operator, spectrum.
Document Type: Article
UDC: 517.984
Language: Russian
Citation: E. M. Maleko, “Generalization of method A. A. Dorodnicyn close calculation of eigenvalues and eigenvectors of symmetric matrices on case of self-conjugate discrete operators”, Izv. Saratov Univ. Math. Mech. Inform., 11:3(2) (2011), 20–29
Citation in format AMSBIB
\Bibitem{Mal11}
\by E.~M.~Maleko
\paper Generalization of method A.\,A.~Dorodnicyn close calculation of eigenvalues and eigenvectors of symmetric matrices on case of self-conjugate discrete operators
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2011
\vol 11
\issue 3(2)
\pages 20--29
\mathnet{http://mi.mathnet.ru/isu244}
\crossref{https://doi.org/10.18500/1816-9791-2011-11-3-2-20-29}
Linking options:
  • https://www.mathnet.ru/eng/isu244
  • https://www.mathnet.ru/eng/isu/v11/i4/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024