Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2011, Volume 11, Issue 3(1), Pages 32–41
DOI: https://doi.org/10.18500/1816-9791-2011-11-3-1-32-41
(Mi isu232)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

About asymptotic polynomials, orthogonal on any grids

Z. M. Magomedova

Branch of the Russian State University of Tourism and Service in Makhachkala, Chair of Economy, Book Keeping, Finansce and Audit
Full-text PDF (213 kB) Citations (2)
References:
Abstract: Asymptotic properties of polynomials orthogonal $l_n(x),$ with weight $e^{-x_j}\Delta t_j$ on any infinite set points from semi-axis $[0,\infty)$ are investigated. Namely an asymptotic formula is proved in which asymptotic behaviour of these polynomials as $n$ tends to infinity together with $N$ is closely related to asymptotic behaviour of the polynomials by Lagerra.
Key words: polynomial, ortogonal system, set, weight, weighted estimate, approximation formula.
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: Z. M. Magomedova, “About asymptotic polynomials, orthogonal on any grids”, Izv. Saratov Univ. Math. Mech. Inform., 11:3(1) (2011), 32–41
Citation in format AMSBIB
\Bibitem{Mag11}
\by Z.~M.~Magomedova
\paper About asymptotic polynomials, orthogonal on any grids
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2011
\vol 11
\issue 3(1)
\pages 32--41
\mathnet{http://mi.mathnet.ru/isu232}
\crossref{https://doi.org/10.18500/1816-9791-2011-11-3-1-32-41}
\elib{https://elibrary.ru/item.asp?id=16539511}
Linking options:
  • https://www.mathnet.ru/eng/isu232
  • https://www.mathnet.ru/eng/isu/v11/i3/p32
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024