|
Mathematics
Parametrization of bivariate nonseparable Haar wavelets
M. S. Krasilnikova Voronezh State University, Chair of Functional Analysis and Operator Equations
Abstract:
A parametrization of all orthogonal wavelet bases for Haar multiresolution analysis is derived. The bases generated by three piecewise constant wavelets $\{\eta_i(x,y)\}$, $i=1,2,3$, supported on $[0,1]\times[0,1]$, with values $a_{ij}\in\mathbb R$, $i=1,2,3$, $j=1,2,3,4$, are considered.
Key words:
orthogonal bases, Haar wavelets, multiresolution analysis.
Citation:
M. S. Krasilnikova, “Parametrization of bivariate nonseparable Haar wavelets”, Izv. Saratov Univ. Math. Mech. Inform., 11:2 (2011), 26–32
Linking options:
https://www.mathnet.ru/eng/isu214 https://www.mathnet.ru/eng/isu/v11/i2/p26
|
Statistics & downloads: |
Abstract page: | 216 | Full-text PDF : | 97 | References: | 50 | First page: | 1 |
|