Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2011, Volume 11, Issue 2, Pages 3–8
DOI: https://doi.org/10.18500/1816-9791-2011-11-2-3-8
(Mi isu211)
 

Mathematics

$\Lambda$-summability and multiplicators of Hölder classes of Fourier series with respect to character systems

N. Yu. Agafonova

Saratov State University, Chair of Theory of Probability, Mathematical Statistics and Manage Stochastics Processes
References:
Abstract: Let $G$ be a Vilenkin group of bounded type. We obtain nessesary and sufficient conditions of uniform $\Lambda$-summability for all Fourier series of $f\in C(G)$ and one of $\Lambda$-summability in $L^1(G)$ for all Fourier series of $f\in L^1(G)$. Also we extend some T. Quek and L. Yap results to the case of general modulus of continuity.
Key words: uniform $\Lambda$-summability, $\Lambda$-summability in $L^1(G)$, Fourier–Vilenkin series, uniform convergence, multipliers.
Document Type: Article
UDC: 517.51
Language: Russian
Citation: N. Yu. Agafonova, “$\Lambda$-summability and multiplicators of Hölder classes of Fourier series with respect to character systems”, Izv. Saratov Univ. Math. Mech. Inform., 11:2 (2011), 3–8
Citation in format AMSBIB
\Bibitem{Aga11}
\by N.~Yu.~Agafonova
\paper $\Lambda$-summability and multiplicators of H\"older classes of Fourier series with respect to character systems
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2011
\vol 11
\issue 2
\pages 3--8
\mathnet{http://mi.mathnet.ru/isu211}
\crossref{https://doi.org/10.18500/1816-9791-2011-11-2-3-8}
Linking options:
  • https://www.mathnet.ru/eng/isu211
  • https://www.mathnet.ru/eng/isu/v11/i2/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024