Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2010, Volume 10, Issue 3, Pages 26–32
DOI: https://doi.org/10.18500/1816-9791-2010-10-3-26-32
(Mi isu171)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

On analogue of Jordan–Dirichlet theorem about the convergence of the expansions in eigenfunctions of a certain class of differential-difference operators

V. A. Khalova

Saratov State University, Chair of Differential Equations and Applied Mathematics
Full-text PDF (154 kB) Citations (2)
References:
Abstract: An analogue of Jordan–Dirichlet theorem is established of convergence of the expansions in eigen functions of the operator $Ly=\alpha y'(x)-y'(1-x)$ with the boundary condition $U(y)=ay(0)+by(1)-(y,\varphi)=0$.
Key words: Jordan–Dirichlet theorem, resolvent.
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: V. A. Khalova, “On analogue of Jordan–Dirichlet theorem about the convergence of the expansions in eigenfunctions of a certain class of differential-difference operators”, Izv. Saratov Univ. Math. Mech. Inform., 10:3 (2010), 26–32
Citation in format AMSBIB
\Bibitem{Kha10}
\by V.~A.~Khalova
\paper On analogue of Jordan--Dirichlet theorem about the convergence of the expansions in eigenfunctions of a~certain class of differential-difference operators
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2010
\vol 10
\issue 3
\pages 26--32
\mathnet{http://mi.mathnet.ru/isu171}
\crossref{https://doi.org/10.18500/1816-9791-2010-10-3-26-32}
\elib{https://elibrary.ru/item.asp?id=16550631}
Linking options:
  • https://www.mathnet.ru/eng/isu171
  • https://www.mathnet.ru/eng/isu/v10/i3/p26
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:399
    Full-text PDF :123
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024