|
Mathematics
Shape-preserving linear n-width of unit balls in $C[0,1]$
S. P. Sidorov Saratov State University, Chair of Mathematical Economics
Abstract:
Let $D^k$, $k$ is a natural number or zero, be the $k$-th differential operator, defined in $C^k(X)$, $X=[0,1]$, and let $C$ be a cone in $C^k(X)$. Let us denote $\delta_n^k(A,C)_{C(X)}:=\inf_{L_n(C)\subset C}\sup_{f\in A}\|D^kf-D^kL_nf\|_{C(X)}$ linear relative $n$-width of set $A\subset C^k(X)$ in $C(X)$ for $D^k$ with constraint $C$. In this paper we estimate linear relative $n$-width of some balls in $C(X)$ for $D^k$ with constraint $C=\{f\in C^k(X):D^kf\ge0\}$.
Citation:
S. P. Sidorov, “Shape-preserving linear n-width of unit balls in $C[0,1]$”, Izv. Saratov Univ. Math. Mech. Inform., 7:1 (2007), 33–39
Linking options:
https://www.mathnet.ru/eng/isu141 https://www.mathnet.ru/eng/isu/v7/i1/p33
|
Statistics & downloads: |
Abstract page: | 317 | Full-text PDF : | 101 | References: | 36 | First page: | 1 |
|