Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2008, Volume 8, Issue 4, Pages 8–13
DOI: https://doi.org/10.18500/1816-9791-2008-8-4-8-13
(Mi isu126)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematics

The theorem on equiconvergence for the integral operator on simplest graph with cycle

M. Sh. Burlutskaya

Voronezh State University, Chair of Mathematical Analysis
Full-text PDF (169 kB) Citations (3)
References:
Abstract: The paper deals with integral operators on the simplest geometric two-edge graph containing the cycle. The class of integral operators with range of values satisfying continuity condition into internal node of graph is described. The equiconvergence of expansions in eigen- and adjoint functions and trigonometric Fourier series is established.
Key words: integral operator, geometric graph, involution, the expansions in eigen and associated functions, equiconvergence.
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: M. Sh. Burlutskaya, “The theorem on equiconvergence for the integral operator on simplest graph with cycle”, Izv. Saratov Univ. Math. Mech. Inform., 8:4 (2008), 8–13
Citation in format AMSBIB
\Bibitem{Bur08}
\by M.~Sh.~Burlutskaya
\paper The theorem on equiconvergence for the integral operator on simplest graph with cycle
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2008
\vol 8
\issue 4
\pages 8--13
\mathnet{http://mi.mathnet.ru/isu126}
\crossref{https://doi.org/10.18500/1816-9791-2008-8-4-8-13}
\elib{https://elibrary.ru/item.asp?id=11674320}
Linking options:
  • https://www.mathnet.ru/eng/isu126
  • https://www.mathnet.ru/eng/isu/v8/i4/p8
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024