Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, Volume 24, Issue 4, Pages 526–535
DOI: https://doi.org/10.18500/1816-9791-2024-24-4-526-535
(Mi isu1049)
 

Scientific Part
Mathematics

On $\frak F^{\omega}$-projectors and $\frak F^{\omega}$-covering subgroups of finite groups

M. M. Sorokina, D. G. Novikova

Bryansk State Academician I. G. Petrovski University, 14 Bezhitskaya St., Bryansk 241036, Russia
References:
Abstract: Only finite groups are considered. $\frak F$-projectors and $\frak F$-covering subgroups, where $\frak F$ is a certain class of groups, were introduced into consideration by W. Gaschutz as a natural generalization of Sylow and Hall subgroups in finite groups. Developing Gaschutz's idea, V. A. Vedernikov and M. M. Sorokina defined $\frak F^{\omega}$-projectors and $\frak F^{\omega}$-covering subgroups, where $\omega$ is a non-empty set of primes, and established their main characteristics. The purpose of this work is to study the properties of $\frak F^{\omega}$-projectors and $\frak F^{\omega}$-covering subgroups, establishing their relation with other subgroups in groups. The following tasks are solved: for a non-empty $\omega$-primitively closed homomorph $\frak F$ and a given set $\pi$ of primes, the conditions under which an $\frak F^{\omega}$-projector of a group coincides with its $\pi$-Hall subgroup are established; for a given formation $\frak F$, a relation between $\frak F^{\omega}$-covering subgroups of a group $G=A\rtimes B$ and $\frak F^{\omega}$-covering subgroups of the group $B$ is obtained. In the paper classical methods of the theory of finite groups, as well as methods of the theory of classes of groups are used.
Key words: group, finite group, class of groups, homomorph, formation, $\frak F^{\omega}$-projector, $\frak F^{\omega}$-covering subgroup.
Received: 19.05.2023
Accepted: 03.07.2023
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: M. M. Sorokina, D. G. Novikova, “On $\frak F^{\omega}$-projectors and $\frak F^{\omega}$-covering subgroups of finite groups”, Izv. Saratov Univ. Math. Mech. Inform., 24:4 (2024), 526–535
Citation in format AMSBIB
\Bibitem{SorNov24}
\by M.~M.~Sorokina, D.~G.~Novikova
\paper On $\frak F^{\omega}$-projectors and $\frak F^{\omega}$-covering subgroups of finite groups
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2024
\vol 24
\issue 4
\pages 526--535
\mathnet{http://mi.mathnet.ru/isu1049}
\crossref{https://doi.org/10.18500/1816-9791-2024-24-4-526-535}
\edn{https://elibrary.ru/KYNPVY}
Linking options:
  • https://www.mathnet.ru/eng/isu1049
  • https://www.mathnet.ru/eng/isu/v24/i4/p526
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024