Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, Volume 24, Issue 4, Pages 512–525
DOI: https://doi.org/10.18500/1816-9791-2024-24-4-512-525
(Mi isu1048)
 

Scientific Part
Mathematics

Numerical solution of first-order exact differential equations by the integrating factor method

L. A. Sevastianovab, K. P. Lovetskiya, D. S. Kulyabovab, S. V. Sergeeva

a Peoples' Friendship University of Russia named after Patrice Lumumba, 6 Miklukho-Maklaya St., Moscow 117198, Russia
b Joint Institute for Nuclear Research, 6 Joliot-Curie St., Dubna 141980, Moscow region, Russia
References:
Abstract: A numerical algorithm for solving exact differential equations is proposed, based both on the efficient calculation of integrating factors and on a “new” numerical method for integrating functions. Robust determination of the integrating factors is implemented by using the Chebyshev interpolation of the desired functions and performing calculations on Gauss – Lobatto grids, which ensure the discrete orthogonality of the Chebyshev matrices. After that, the integration procedure is carried out using the Chebyshev integration matrices. The integrating factor and the final potential of the ODE solution are presented as interpolation polynomials depending on a limited number of numerically recoverable expansion coefficients.
Key words: spectral method, collocation, integrating factors, integration matrices, recovery of coefficients, inverse problem.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 021934-0-000
Russian Science Foundation 20-11-20257
This work was supported by the RUDN University Scientific Projects Grant System (project No. 021934-0-000, recipient Konstantin P. Lovetskiy) and by the RUDN University Strategic Academic Leadership Program (recipient Dmitry S. Kulyabov, Stepan V. Sergeev). The work of Leonid A. Sevastianov was supported by the Russian Science Foundation (project No. 20-11-20257).
Received: 14.09.2023
Accepted: 04.12.2023
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: English
Citation: L. A. Sevastianov, K. P. Lovetskiy, D. S. Kulyabov, S. V. Sergeev, “Numerical solution of first-order exact differential equations by the integrating factor method”, Izv. Saratov Univ. Math. Mech. Inform., 24:4 (2024), 512–525
Citation in format AMSBIB
\Bibitem{SevLovKul24}
\by L.~A.~Sevastianov, K.~P.~Lovetskiy, D.~S.~Kulyabov, S.~V.~Sergeev
\paper Numerical solution of first-order exact differential equations by the integrating factor method
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2024
\vol 24
\issue 4
\pages 512--525
\mathnet{http://mi.mathnet.ru/isu1048}
\crossref{https://doi.org/10.18500/1816-9791-2024-24-4-512-525}
\edn{https://elibrary.ru/ILSNIX}
Linking options:
  • https://www.mathnet.ru/eng/isu1048
  • https://www.mathnet.ru/eng/isu/v24/i4/p512
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024