Intelligent systems. Theory and applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Intelligent systems. Theory and applications:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Intelligent systems. Theory and applications, 2020, Volume 24, Issue 4, Pages 87–117 (Mi ista284)  

Part 3. Mathematical models

On the minimum distance in one class of quantum LDPC codes

G. V. Kalachev, P. A. Panteleev

Lomonosov Moscow State University
References:
Abstract: We consider a family of quantum LDPC codes with weight-6 stabilizer generators and two logical qubits, where some logical operators have a fractal structure. These codes can be considered as local quantum codes on the $L \times L \times L$ cubic lattice with periodic boundary conditions. We prove that the minimum distance of codes from this family is bounded below by $\Omega (L^\alpha)$, where $\alpha = \log_2 (2(\sqrt{5} - 1)) \approx 1.306$.
Keywords: quantum LDPC code, local quantum code, minimum distance, linear cellular automaton, fractal dimension.
Document Type: Article
Language: Russian
Citation: G. V. Kalachev, P. A. Panteleev, “On the minimum distance in one class of quantum LDPC codes”, Intelligent systems. Theory and applications, 24:4 (2020), 87–117
Citation in format AMSBIB
\Bibitem{KalPan20}
\by G.~V.~Kalachev, P.~A.~Panteleev
\paper On the minimum distance in one class of quantum LDPC codes
\jour Intelligent systems. Theory and applications
\yr 2020
\vol 24
\issue 4
\pages 87--117
\mathnet{http://mi.mathnet.ru/ista284}
Linking options:
  • https://www.mathnet.ru/eng/ista284
  • https://www.mathnet.ru/eng/ista/v24/i4/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Intelligent systems. Theory and applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024