Meždunarodnyj naučno-issledovatel'skij žurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Meždunar. nauč.-issled. žurn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Meždunarodnyj naučno-issledovatel'skij žurnal, 2022, , Issue 2(116), Pages 15–23
DOI: https://doi.org/10.23670/IRJ.2022.116.2.002
(Mi irj636)
 

PHYSICS AND MATHEMATICS

Differential properties of the functions $f \in V_{p, \theta}^{<m+\alpha ; N>}(G ; s)$

N. A. Neymatov

Ganja State University
References:
Abstract: The first integral representation of the functions of many variables defined in the regions (star regions relative to the points of a given ball) $G \subset E_{n}$ belongs to academician S.L. Sobolev. S.L.Sobolev developed a method of integral representations of functions from well-known functional spaces constructed by him $W_{p}^{r}(G)$ and proved the basic theorems of embedding these spaces with further applications to the theory of partial differential equations.
Further development of the method of integral representations of the theory of spaces of differentiable functions of many variables is associated with the name of V.P. Ilyin. He proved a fundamentally new integral representation of functions of many variables at any point $x \in E_{n}$.
The study investigates the "weight" spaces of functions $f=f(x)$, points of $x=\left(x_{1}, \ldots, x_{s}\right) \in E_{n}(1 \leq s \leq n)$ many bundles of variables $x_{k}=\left(x_{k, 1}, \ldots, x_{k, n_{k}}\right) \in E_{n_{k}} \quad(k=1,2, \ldots, s) \quad$ defined in the domain $G \subset E_{n}=E_{n_{1}} \times \cdots \times E_{n_{s}}\left(n=n_{1}+\cdots+n_{s}\right)$ satisfying the condition "variable $\Psi(x, h)$-semihorn". These constructed "weight" spaces of the type of generalized $B$-spaces depend on the parameter $s\left(1 \leq s \leq n=n_{1}+\cdots+n_{s}\right)$, which in the case $s=1$ generalize the known "weight" spaces $B_{p}^{\eta, . ., r_{n}}\left(G, \rho^{\alpha}\right)-\mathrm{O} . \mathrm{V} .$ Besov, and in the case $s=1$, generalize the known spaces of $S_{p, 0}^{r} B\left(G, \rho^{\alpha}\right)$ functions with a dominant shifted derivative, in the case of power "weights" given in the works of A.J.Dzhabrailov. A.D.Dzhabrailov proved new integral representations of functions of many variables, with the help of which he managed to build a general theory of spaces of functions with a dominant mixed derivative $S_{p}^{r} W(G)$ and $S_{p, \theta}^{r} B(G)$, with further development of the method of integral representations in the theory of the embedding theorem of these spaces.
A new functional space is also constructed by the method of integral representations [1] based on a new integral representation of smooth functions at points $x \in E_{n}$.
Keywords: spaces, whole, vector, semihorns, seminorm.
Document Type: Article
Language: Russian
Citation: N. A. Neymatov, “Differential properties of the functions $f \in V_{p, \theta}^{<m+\alpha ; N>}(G ; s)$”, Meždunar. nauč.-issled. žurn., 2022, no. 2(116), 15–23
Citation in format AMSBIB
\Bibitem{Ney22}
\by N.~A.~Neymatov
\paper Differential properties of the functions $f \in V_{p, \theta}^{<m+\alpha ; N>}(G ; s)$
\jour Me{\v z}dunar. nau{\v{c}}.-issled. {\v z}urn.
\yr 2022
\issue 2(116)
\pages 15--23
\mathnet{http://mi.mathnet.ru/irj636}
\crossref{https://doi.org/10.23670/IRJ.2022.116.2.002}
Linking options:
  • https://www.mathnet.ru/eng/irj636
  • https://www.mathnet.ru/eng/irj/v116/i2/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Meždunarodnyj naučno-issledovatel'skij žurnal
    Statistics & downloads:
    Abstract page:119
    Full-text PDF :34
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024