Meždunarodnyj naučno-issledovatel'skij žurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Meždunar. nauč.-issled. žurn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Meždunarodnyj naučno-issledovatel'skij žurnal, 2021, , Issue 7(109), Pages 15–21
DOI: https://doi.org/10.23670/IRJ.2021.109.7.003
(Mi irj618)
 

PHYSICS AND MATHEMATICS

Mathematical model of melanoma

A. B. Goncharova, E. I. Zimina, E. P. Kolpak

Saint Petersburg State University
References:
Abstract: The current article introduces a mathematical model of a growing four-stage surface melanoma. The model is represented by the Cauchy problem for a system of four ordinary differential equations. The stages of the disease are modeled by chambers of various capacities with the movement of malignant cells from chamber to chamber. The chemotherapy model takes into account the direct effect of drugs on tumor cells at a given time interval. Using a statistical approach, the authors develop a model for constructing the distribution of patients by the time of diagnosis, the duration of treatment, and the time of relapse. Also, the article provides an estimation of the drugs to be consumed for treatment to a given required level of survival. The model parameters are determined based on clinical data on the growth rate of the neoplasm, the time interval of treatment.
Keywords: differential equations, mathematical modelling, treatment model, neoplasm, relapse, resistance.
Document Type: Article
Language: Russian
Citation: A. B. Goncharova, E. I. Zimina, E. P. Kolpak, “Mathematical model of melanoma”, Meždunar. nauč.-issled. žurn., 2021, no. 7(109), 15–21
Citation in format AMSBIB
\Bibitem{GonZimKol21}
\by A.~B.~Goncharova, E.~I.~Zimina, E.~P.~Kolpak
\paper Mathematical model of melanoma
\jour Me{\v z}dunar. nau{\v{c}}.-issled. {\v z}urn.
\yr 2021
\issue 7(109)
\pages 15--21
\mathnet{http://mi.mathnet.ru/irj618}
\crossref{https://doi.org/10.23670/IRJ.2021.109.7.003}
Linking options:
  • https://www.mathnet.ru/eng/irj618
  • https://www.mathnet.ru/eng/irj/v109/i7/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Meždunarodnyj naučno-issledovatel'skij žurnal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024