Meždunarodnyj naučno-issledovatel'skij žurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Meždunar. nauč.-issled. žurn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Meždunarodnyj naučno-issledovatel'skij žurnal, 2017, , Issue 10-3(64), Pages 107–112
DOI: https://doi.org/10.23670/IRJ.2017.64.019
(Mi irj219)
 

PHYSICS AND MATHEMATICS

Sufficient conditions of quasi-accuracy of a mixed boundary condition

V. V. Kazaka, N. N. Solokhinb

a Southern Federal University, Rostov-on-Don
b Don State Technical University, Rostov-on-Don
References:
Abstract: The most common external constraints in the theory of infinitesimal bending of surfaces are the constraints that determine the dependence between the displacement of the edge points and the rotation of the tangent planes of the surface along the edgemixed outer bonds under infinitesimal bending. Such connections are a generalization of the boundary conditions of generalized slip and generalized rotation. In this paper, we study an infinitesimal bending of surfaces of the second order of positive curvature with boundary that are subordinate to the edge of an external connection of the mixed type. In this case we consider the vector field that does not belong to the surface.
Keywords: surface of positive curvature, infinitesimal bending, displacement field, rotation field.
Document Type: Article
Language: Russian
Citation: V. V. Kazak, N. N. Solokhin, “Sufficient conditions of quasi-accuracy of a mixed boundary condition”, Meždunar. nauč.-issled. žurn., 2017, no. 10-3(64), 107–112
Citation in format AMSBIB
\Bibitem{KazSol17}
\by V.~V.~Kazak, N.~N.~Solokhin
\paper Sufficient conditions of quasi-accuracy of a mixed boundary condition
\jour Me{\v z}dunar. nau{\v{c}}.-issled. {\v z}urn.
\yr 2017
\issue 10-3(64)
\pages 107--112
\mathnet{http://mi.mathnet.ru/irj219}
\crossref{https://doi.org/10.23670/IRJ.2017.64.019}
Linking options:
  • https://www.mathnet.ru/eng/irj219
  • https://www.mathnet.ru/eng/irj/v64/i10/p107
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Meždunarodnyj naučno-issledovatel'skij žurnal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025