Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Preprints of the Keldysh Institute of Applied Mathematics, 2003, 035, 32 pp. (Mi ipmp908)  

Economical unconditionally stable locally-implicit finite difference schemes for 2-D hyperbolic systems

Yu. B. Radvogin
Abstract: A new approach for the construction of economical algorithms (of the first and second order of accuracy) for the solution of linear hyperbolic systems is presented. Its main elements are independent calculation of fluxes in each spatial direction and locally – implicit difference scheme for the solution of one-dimensional hyperbolic systems in which the implicit scheme is used if and only if the corresponding Courant number is greater than one.
Document Type: Preprint
Language: Russian
Citation: Yu. B. Radvogin, “Economical unconditionally stable locally-implicit finite difference schemes for 2-D hyperbolic systems”, Keldysh Institute preprints, 2003, 035, 32 pp.
Citation in format AMSBIB
\Bibitem{Rad03}
\by Yu.~B.~Radvogin
\paper Economical unconditionally stable locally-implicit finite difference schemes for 2-D hyperbolic systems
\jour Keldysh Institute preprints
\yr 2003
\papernumber 035
\totalpages 32
\mathnet{http://mi.mathnet.ru/ipmp908}
Linking options:
  • https://www.mathnet.ru/eng/ipmp908
  • https://www.mathnet.ru/eng/ipmp/y2003/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Препринты Института прикладной математики им. М. В. Келдыша РАН
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024