|
This article is cited in 2 scientific papers (total in 2 papers)
Computation of unimodular matrices
A. D. Bruno, A. A. Azimov
Abstract:
Here we give an algorithm for solving the following problem. Let $m<n$ integer vectors be given in the $n$-dimensional real space. Their linear span forms a linear subspace $L$ in $\mathbb{R}^n$. It is required to calculate such an unimodular matrix that a linear transformation with it transforms the subspace $L$ into a coordinate one. Also, programs that implement the algorithms and power transformations, for which they are needed, are given.
Keywords:
unimodular matrix, integer vector, continued fraction, the Euler's
algorithm, power transformation.
Citation:
A. D. Bruno, A. A. Azimov, “Computation of unimodular matrices”, Keldysh Institute preprints, 2022, 046, 20 pp.
Linking options:
https://www.mathnet.ru/eng/ipmp3072 https://www.mathnet.ru/eng/ipmp/y2022/p46
|
Statistics & downloads: |
Abstract page: | 78 | Full-text PDF : | 60 | References: | 19 |
|