Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Preprints of the Keldysh Institute of Applied Mathematics, 2019, 073, 40 pp.
DOI: https://doi.org/10.20948/prepr-2019-73
(Mi ipmp2711)
 

This article is cited in 1 scientific paper (total in 1 paper)

Linear schemes with several degrees of freedom for the 1D transport equation

P. A. Bakhvalov, M. D. Surnachev
Full-text PDF (523 kB) Citations (1)
References:
Abstract: We consider linear schemes with several degrees of freedom for the 1D transport equation. The solution error possesses the estimate $O(h^p + th^q)$ where $p$ is equal to or greater by one than the truncation error order and $q\geqslant p$ (for the discontinuous Galerkin method $p = k+1$ and $q = 2k+1$ where $k$ is the order of polynomials). We prove that this estimate holds if and only if there exists a mapping of smooth functions on the mesh space providing the $q$-th order of the truncation error and deviating from the standard mapping ($L_2$-projection for example) by $O(h^p)$. This fact leads to an algorithm establishing the optimal values $p$ and $q$ for a given scheme.
Keywords: consistency and accuracy, superconvergence.
Bibliographic databases:
Document Type: Preprint
Language: Russian
Citation: P. A. Bakhvalov, M. D. Surnachev, “Linear schemes with several degrees of freedom for the 1D transport equation”, Keldysh Institute preprints, 2019, 073, 40 pp.
Citation in format AMSBIB
\Bibitem{BakSur19}
\by P.~A.~Bakhvalov, M.~D.~Surnachev
\paper Linear schemes with several degrees of freedom for the 1D transport equation
\jour Keldysh Institute preprints
\yr 2019
\papernumber 073
\totalpages 40
\mathnet{http://mi.mathnet.ru/ipmp2711}
\crossref{https://doi.org/10.20948/prepr-2019-73}
\elib{https://elibrary.ru/item.asp?id=38535614}
Linking options:
  • https://www.mathnet.ru/eng/ipmp2711
  • https://www.mathnet.ru/eng/ipmp/y2019/p73
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Препринты Института прикладной математики им. М. В. Келдыша РАН
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :33
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024