Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Preprints of the Keldysh Institute of Applied Mathematics, 2016, 011, 10 pp. (Mi ipmp2087)  

On convex polytopes of distributions preserved by finite field operations

A. D. Yashunsky
References:
Abstract: We construct families of polytopes in the space of probability distributions over a finite field, which are preserved, i.e. when adding or multiplying independent random variables with distributions from the constructed set, one obtains a result whose distribution belongs to the set as well.
Keywords: random variable, finite field, preserved set, convex polytope.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00598
Document Type: Preprint
Language: English
Citation: A. D. Yashunsky, “On convex polytopes of distributions preserved by finite field operations”, Keldysh Institute preprints, 2016, 011, 10 pp.
Citation in format AMSBIB
\Bibitem{Yas16}
\by A.~D.~Yashunsky
\paper On convex polytopes of distributions preserved by finite field operations
\jour Keldysh Institute preprints
\yr 2016
\papernumber 011
\totalpages 10
\mathnet{http://mi.mathnet.ru/ipmp2087}
Linking options:
  • https://www.mathnet.ru/eng/ipmp2087
  • https://www.mathnet.ru/eng/ipmp/y2016/p11
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Препринты Института прикладной математики им. М. В. Келдыша РАН
    Statistics & downloads:
    Abstract page:111
    Full-text PDF :64
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024