Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Preprints of the Keldysh Institute of Applied Mathematics, 2013, 031, 18 pp. (Mi ipmp1781)  

This article is cited in 2 scientific papers (total in 2 papers)

Random walks modeling on Cantor set

D. A. Zenyuk, N. A. Mitin, Yu. N. Orlov
Full-text PDF (436 kB) Citations (2)
References:
Abstract: The method for constructing a random walk on generalized Cantor set in terms of finite random binary sequences is proposed. Some characteristics and examples of sample paths of described stochastic process are obtained.
Keywords: random walks, fractal sets, anomalous diffusion.
Document Type: Preprint
Language: Russian
Citation: D. A. Zenyuk, N. A. Mitin, Yu. N. Orlov, “Random walks modeling on Cantor set”, Keldysh Institute preprints, 2013, 031, 18 pp.
Citation in format AMSBIB
\Bibitem{ZenMitOrl13}
\by D.~A.~Zenyuk, N.~A.~Mitin, Yu.~N.~Orlov
\paper Random walks modeling on Cantor set
\jour Keldysh Institute preprints
\yr 2013
\papernumber 031
\totalpages 18
\mathnet{http://mi.mathnet.ru/ipmp1781}
Linking options:
  • https://www.mathnet.ru/eng/ipmp1781
  • https://www.mathnet.ru/eng/ipmp/y2013/p31
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Препринты Института прикладной математики им. М. В. Келдыша РАН
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :160
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024