Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Preprints of the Keldysh Institute of Applied Mathematics, 2013, 017, 16 pp. (Mi ipmp17)  

Optimal set length indicator for non-stationary time-series

A. V. Lebedev, Yu. N. Orlov, D. O. Shagov
References:
Abstract: The properties of distributions of the distances between two empirical distribution function densities for non-stationary time-series are investigated. The optimal choice of histogram interval is suggested on the basis of self-agreement accuracy of empirical probability. The generalization of optimal set length indicator with the use of statistical good quality factor is given.
Keywords: statistical good quality indicator, optimal histogram class interval, time series, non-stationary distributions.
Document Type: Preprint
Language: Russian
Citation: A. V. Lebedev, Yu. N. Orlov, D. O. Shagov, “Optimal set length indicator for non-stationary time-series”, Keldysh Institute preprints, 2013, 017, 16 pp.
Citation in format AMSBIB
\Bibitem{LebOrlSha13}
\by A.~V.~Lebedev, Yu.~N.~Orlov, D.~O.~Shagov
\paper Optimal set length indicator for non-stationary time-series
\jour Keldysh Institute preprints
\yr 2013
\papernumber 017
\totalpages 16
\mathnet{http://mi.mathnet.ru/ipmp17}
Linking options:
  • https://www.mathnet.ru/eng/ipmp17
  • https://www.mathnet.ru/eng/ipmp/y2013/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Препринты Института прикладной математики им. М. В. Келдыша РАН
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024