Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Preprints of the Keldysh Institute of Applied Mathematics, 1996, 071 (Mi ipmp1572)  

To the Investigation of MHD Flows in Channels with the Use of One-Dimensional Models. Part 1

K. P. Gorshenin, G. A. Kalugin
Abstract: Quasi-one-dimensional model of MHD flow in coaxial channel is considered. The correlations between the integral characteristics of transonic flows are analyzed. The conditions are discussed under which they may be used. On the basis of quasi-one-dimensional theory the formulas approximating the dependencies of the integral parameters of two-dimensional flows on the discharge current are constructed. The estimates of the coefficients of acceleration and compression are improved.
Document Type: Preprint
Language: Russian
Citation: K. P. Gorshenin, G. A. Kalugin, “To the Investigation of MHD Flows in Channels with the Use of One-Dimensional Models. Part 1”, Keldysh Institute preprints, 1996, 071
Citation in format AMSBIB
\Bibitem{1}
\by K.~P.~Gorshenin, G.~A.~Kalugin
\paper To the Investigation of MHD Flows in Channels with the Use of One-Dimensional Models. Part 1
\jour Keldysh Institute preprints
\yr 1996
\papernumber 071
\mathnet{http://mi.mathnet.ru/ipmp1572}
Linking options:
  • https://www.mathnet.ru/eng/ipmp1572
  • https://www.mathnet.ru/eng/ipmp/y1996/p71
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Препринты Института прикладной математики им. М. В. Келдыша РАН
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025