Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Preprints of the Keldysh Institute of Applied Mathematics, 2013, 014, 26 pp. (Mi ipmp14)  

This article is cited in 11 scientific papers (total in 11 papers)

Optimal histogram interval for non-stationary time-series distribution function density estimation

Yu. N. Orlov
References:
Abstract: The properties of distributions of the distances between two empirical distribution function densities for non-stationary time-series are investigated. The optimal choice of histogram interval is suggested on the basis of self-agreement accuracy of empirical probability. The estimation is given by a new non-parametric method.
Keywords: optimal histogram class interval , non-stationary distributions, time series.
Document Type: Preprint
Language: Russian
Citation: Yu. N. Orlov, “Optimal histogram interval for non-stationary time-series distribution function density estimation”, Keldysh Institute preprints, 2013, 014, 26 pp.
Citation in format AMSBIB
\Bibitem{Orl13}
\by Yu.~N.~Orlov
\paper Optimal histogram interval for non-stationary time-series distribution function density estimation
\jour Keldysh Institute preprints
\yr 2013
\papernumber 014
\totalpages 26
\mathnet{http://mi.mathnet.ru/ipmp14}
Linking options:
  • https://www.mathnet.ru/eng/ipmp14
  • https://www.mathnet.ru/eng/ipmp/y2013/p14
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Препринты Института прикладной математики им. М. В. Келдыша РАН
    Statistics & downloads:
    Abstract page:580
    Full-text PDF :474
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024