Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Preprints of the Keldysh Institute of Applied Mathematics, 1999, 037 (Mi ipmp1266)  

Boundary Value Problems for Elliptic Operator Pencils

L. R. Volevich, R.Denk, R.Mennicken
Abstract: In this paper operator pencils A(x,D,$\lambda$) are investigated which depend polynomially on the parameter $\lambda$ and act on a manifold with boundary. The operator A is assumed to satisfy the condition of N-ellipticity with parameter, which is an ellipticity condition, formulated with the use of the Newton polygon. We consider boundary operators B<sub>1</sub>(x,D), . . . ,B<sub>m</sub>(x.D) of general form and define N-ellipticity for the boundary value problem B<sub>1</sub>(x,D), . . . ,B<sub>m</sub>(x.D) analogously to the Shapiro-Lopatinskii condition.
Document Type: Preprint
Language: Russian
Citation: L. R. Volevich, R.Denk, R.Mennicken, “Boundary Value Problems for Elliptic Operator Pencils”, Keldysh Institute preprints, 1999, 037
Citation in format AMSBIB
\Bibitem{Vol99}
\by L.~R.~Volevich, R.Denk, R.Mennicken
\paper Boundary Value Problems for Elliptic Operator Pencils
\jour Keldysh Institute preprints
\yr 1999
\papernumber 037
\mathnet{http://mi.mathnet.ru/ipmp1266}
Linking options:
  • https://www.mathnet.ru/eng/ipmp1266
  • https://www.mathnet.ru/eng/ipmp/y1999/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Препринты Института прикладной математики им. М. В. Келдыша РАН
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025