Loading [MathJax]/jax/output/CommonHTML/config.js
Itogi Nauki i Tekhniki. Seriya "Teoriya Veroyatnostei. Matematicheskaya Statistika. Teoreticheskaya Kibernetika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Teoriya Veroyatnostei. Matematicheskaya Statistika. Teoreticheskaya Kibernetika", 1992, Volume 30, Pages 3–112 (Mi intv80)  

This article is cited in 18 scientific papers (total in 18 papers)

Statistical tests based on empirical processes and related questions

G. V. Martynov
Abstract: We consider goodness-of-fit tests for hypotheses about the forms of distributions and their membership in prescribed families of distributions. We first describe the classical tests based on empirical processes such as the omega-square tests of Cramér–von Mises–Smirnov and the Kolmogorov–Smirnov tests. We also consider Shapiro–Wilk tests. We devote a considerable amount of attention to testing the hypothesis that a random variable or vector is normal. We describe tests based on transformations of the empirical process, minimal distance tests and estimates, tests for symmetry, uniformity, and independence, and tests based on spacings. At the end we study methods of computing and the distribution functions of quadratic forms of normal random variables connected with tests of omega-square type. Bibliography: 372 titles.
English version:
Journal of Soviet Mathematics, 1992, Volume 61, Issue 4, Pages 2195–2271
DOI: https://doi.org/10.1007/BF01104102
Bibliographic databases:
UDC: 519.234
Language: Russian
Citation: G. V. Martynov, “Statistical tests based on empirical processes and related questions”, Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern., 30, VINITI, Moscow, 1992, 3–112; J. Soviet Math., 61:4 (1992), 2195–2271
Citation in format AMSBIB
\Bibitem{Mar92}
\by G.~V.~Martynov
\paper Statistical tests based on empirical processes and related questions
\serial Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern.
\yr 1992
\vol 30
\pages 3--112
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intv80}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1172613}
\zmath{https://zbmath.org/?q=an:0790.62041}
\transl
\jour J. Soviet Math.
\yr 1992
\vol 61
\issue 4
\pages 2195--2271
\crossref{https://doi.org/10.1007/BF01104102}
Linking options:
  • https://www.mathnet.ru/eng/intv80
  • https://www.mathnet.ru/eng/intv/v30/p3
  • This publication is cited in the following 18 articles:
    1. G. V. Martynov, “Anderson–Darling statistic and its “inverse””, J. Commun. Technol. Electron., 61:6 (2016), 709  crossref
    2. Gennady Martynov, Mathematical Statistics and Limit Theorems, 2015, 209  crossref
    3. Ilia Negri, Li Zhou, “On goodness-of-fit testing for ergodic diffusion process with shift parameter”, Stat Inference Stoch Process, 17:1 (2014), 51  crossref
    4. Anis Gassem, “On the goodness-of-fit testing for a switching diffusion process”, Comptes Rendus. Mathématique, 349:15-16 (2011), 897  crossref
    5. Anirban DasGupta, Springer Texts in Statistics, Probability for Statistics and Machine Learning, 2011, 221  crossref
    6. Anis Gassem, “On Cramér–von Mises type test based on local time of switching diffusion process”, Journal of Statistical Planning and Inference, 141:4 (2011), 1355  crossref
    7. G. V. Martynov, “Multivariable goodness tests and approximation of the residues of quadratic forms”, Autom. Remote Control, 71:7 (2010), 1346–1357  mathnet  crossref  mathscinet  zmath  isi
    8. A. Gassem, “Goodness-of-fit test for switching diffusion”, Stat Inference Stoch Process, 13:2 (2010), 97  crossref
    9. Paul Deheuvels, Guennadi V. Martynov, “A Karhunen–Loeve decomposition of a Gaussian process generated by independent pairs of exponential random variables”, Journal of Functional Analysis, 255:9 (2008), 2363  crossref
    10. R. Tahmasbi, S. Rezaei, “Change Point Detection in GARCH Models for Voice Activity Detection”, IEEE Trans. Audio Speech Lang. Process., 16:5 (2008), 1038  crossref
    11. Anirban DasGupta, Springer Texts in Statistics, Asymptotic Theory of Statistics and Probability, 2008, 421  crossref
    12. G. Martynov, M. Mesbah, “Goodness of Fit Test and Latent Distribution Estimation in the Mixed Rasch Model”, Communications in Statistics - Theory and Methods, 35:5 (2006), 921  crossref
    13. Paul Deheuvels, Guennady Martynov, High Dimensional Probability III, 2003, 57  crossref
    14. Paul Deheuvels, Goodness-of-Fit Tests and Model Validity, 2002, 463  crossref
    15. Lajos Horváth, Agnieszka Jach, Piotr Kokoszka, Statistical Data Analysis Based on the L1-Norm and Related Methods, 2002, 229  crossref
    16. István Berkes, Lajos Horváth, Empirical Process Techniques for Dependent Data, 2002, 195  crossref
    17. Lajos Horváth, Gilles Teyssière, “Empirical process of the squared residuals of an arch sequence”, Ann. Statist., 29:2 (2001)  crossref
    18. Paul Deheuvels, Guennady V. Martynov, “Cramer-von mises-type tests with applications to tests of independence for multivariate extreme-value distributions”, Communications in Statistics - Theory and Methods, 25:4 (1996), 871  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:2240
    Full-text PDF :4005
    References:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025