Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Seriya "Teoriya Veroyatnostei. Matematicheskaya Statistika. Teoreticheskaya Kibernetika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Teoriya Veroyatnostei. Matematicheskaya Statistika. Teoreticheskaya Kibernetika", 1984, Volume 22, Pages 61–157 (Mi intv59)  

This article is cited in 18 scientific papers (total in 18 papers)

Fibering method in some probabilistic problems

Yu. A. Davydov, M. A. Lifshits
Abstract: The paper is devoted to a systematic study of the distributions of functionals of stochastic processes by the fibering method and to a survey of results obtained in this direction in recent years. Principal attention is given to distinguishing conditions ensuring: a) absolute continuity; b) the existence of a bounded density; c) applicability of the local limit theorem for the distributions of functionals. Smooth, convex functionals and functionals of integral type are considered in detail.
English version:
Journal of Soviet Mathematics, 1985, Volume 31, Issue 2, Pages 2796–2858
DOI: https://doi.org/10.1007/BF02116602
Bibliographic databases:
UDC: 519.218.7
Language: Russian
Citation: Yu. A. Davydov, M. A. Lifshits, “Fibering method in some probabilistic problems”, Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern., 22, VINITI, Moscow, 1984, 61–157; J. Soviet Math., 31:2 (1985), 2796–2858
Citation in format AMSBIB
\Bibitem{DavLif84}
\by Yu.~A.~Davydov, M.~A.~Lifshits
\paper Fibering method in some probabilistic problems
\serial Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern.
\yr 1984
\vol 22
\pages 61--157
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intv59}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=778385}
\zmath{https://zbmath.org/?q=an:0566.60040|0571.60048}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 31
\issue 2
\pages 2796--2858
\crossref{https://doi.org/10.1007/BF02116602}
Linking options:
  • https://www.mathnet.ru/eng/intv59
  • https://www.mathnet.ru/eng/intv/v22/p61
  • This publication is cited in the following 18 articles:
    1. Axel Bücher, Holger Dette, Florian Heinrichs, “Detecting deviations from second-order stationarity in locally stationary functional time series”, Ann Inst Stat Math, 72:4 (2020), 1055  crossref
    2. A. N. Borodin, Yu. A. Davydov, V. B. Nevzorov, “On the History of the St. Petersburg School of Probability and Statistics. III. Distributions of Functionals of Processes, Stochastic Geometry, and Extrema”, Vestnik St.Petersb. Univ.Math., 51:4 (2018), 343  crossref
    3. Jean-Christophe Breton, “Regularity of the Laws of Shot Noise Series and of Related Processes”, J Theor Probab, 23:1 (2010), 21  crossref
    4. Theory Probab. Appl., 51:2 (2007), 256–278  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. Jean-Christophe Breton, “Absolute Continuity of Joint Laws of Multiple Stable Stochastic Integrals”, J Theor Probab, 18:1 (2005), 43  crossref
    6. “Absolute continuity between a Gibbs measure and its translate”, Theory Probab. Appl., 49:4 (2005), 713–724  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. Jean-Christophe Breton, “Absolue continuité des lois jointes des intégrales stables multiples”, Comptes Rendus. Mathématique, 334:2 (2002), 135  crossref
    8. Emmanuel Nowak, “Distance en variation totale entre une mesure de Gibbs et sa translatée”, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, 326:2 (1998), 239  crossref
    9. A. M. Nikulin, “The strong convergence of distributions of Brownian sojourn times in procedures of approximations”, J. Math. Sci. (New York), 93:3 (1999), 399–413  mathnet  mathnet  crossref
    10. V. I. Piterbarg, V. R. Fatalov, “The Laplace method for probability measures in Banach spaces”, Russian Math. Surveys, 50:6 (1995), 1151–1239  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    11. Yu. A. Davydov, R. R. Manukyan, “A local limit theorem for multiple Wiener–Itô stochastic integrals”, Theory Probab. Appl., 40:2 (1995), 354–361  mathnet  mathnet  crossref  isi
    12. V. I. Bogachev, “Functionals of random processes and infinite-dimensional oscillatory integrals connected with them”, Russian Acad. Sci. Izv. Math., 40:2 (1993), 235–266  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    13. V. Paulauskas, A. Račkauskas, “Nonuniform estimates in the central limit theorem in Banach spaces”, Lith Math J, 31:3 (1991), 335  crossref
    14. R. Norvaiša, V. Paulauskas, “Rate of convergence in the central limit theorem for empirical processes”, J Theor Probab, 4:3 (1991), 511  crossref
    15. V. I. Bogachev, O. G. Smolyanov, “Analytic properties of infinite-dimensional distributions”, Russian Math. Surveys, 45:3 (1990), 1–104  mathnet  crossref  mathscinet  zmath  isi
    16. V. I. Paulauskas, “A note on Gaussian measure of balls in Banach spaces”, Theory Probab. Appl., 35:4 (1990), 802–805  mathnet  mathnet  crossref  isi
    17. M. A. Lifshits, “Distribution density of the norm of a stable vector”, J Math Sci, 43:6 (1988), 2810  crossref
    18. Yu. A. Davydov, “Absolute continuity of the images of measures”, J. Soviet Math., 36:4 (1987), 468–473  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:583
    Full-text PDF :345
    References:2
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025