Abstract:
The paper is devoted to a survey and systematic exposition of the technique of obtaining cluster expansions for lattice Gibbs fields in the low-temperature region in the case of a finite or countable number of basic states.
Citation:
V. A. Malyshev, R. A. Minlos, E. N. Petrova, Yu. A. Terletskii, “Generalized contour models”, Itogi Nauki i Tekhniki. Ser. Teor. Veroyatn. Mat. Stat. Teor. Kibern., 19, VINITI, Moscow, 1982, 3–54; J. Soviet Math., 23:5 (1983), 2501–2533
This publication is cited in the following 7 articles:
Matteo D'Achille, Aernout C. D. van Enter, Arnaud Le Ny, “Decimations for one- and two-dimensional Ising and rotator models. II. Continuous vs discrete symmetries”, Journal of Mathematical Physics, 63:12 (2022)
Gibbs Measures and Phase Transitions, 2011, 495
Aernout C. D. van Enter, Christof Külske, Alex A. Opoku, Wioletta M. Ruszel, “Gibbs–non-Gibbs properties for n-vector lattice and mean-field models”, Braz. J. Probab. Stat., 24:2 (2010)
Gibbs Measures and Phase Transitions, 1988
E. A. Pechersky, S. B. Shlosman, “Low-temperature phase transitions in systems with one ground state”, Theoret. and Math. Phys., 70:3 (1987), 325–330
A. G. Basuev, “Hamiltonian of the phase separation border and phase transitions of the first kind. II. The simplest disordered phases”, Theoret. and Math. Phys., 72:2 (1987), 861–871
D. G. Martirosyan, “Uniqueness of Gibbs states in lattice models with one ground state”, Theoret. and Math. Phys., 63:2 (1985), 511–518